The article was written with the contribution of Péter Poczai, iASK researcher and was released in Genes in 2022.
Abstract
Drought is a major abiotic stressor that causes yield losses and limits the growing area for most crops. Soybeans are an important legume crop that is sensitive to water-deficit conditions and suffers heavy yield losses from drought stress. To improve drought-tolerant soybean cultivars through breeding, it is necessary to understand the mechanisms of drought tolerance in soybeans. In this study, we applied several transcriptome datasets obtained from soybean plants under drought stress in comparison to those grown under normal conditions to identify novel drought-responsive genes and their underlying molecular mechanisms. We found 2168 significant up/downregulated differentially expressed genes (DEGs) and 8 core modules using gene co-expression analysis to predict their biological roles in drought tolerance. Gene Ontology and KEGG analyses revealed key biological processes and metabolic pathways involved in drought tolerance, such as photosynthesis, glyceraldehyde-3-phosphate dehydrogenase and cytokinin dehydrogenase activity, and regulation of systemic acquired resistance. Genome-wide analysis of plants’ cis-acting regulatory elements (CREs) and transcription factors (TFs) was performed for all of the identified DEG promoters in soybeans. Furthermore, the PPI network analysis revealed significant hub genes and the main transcription factors regulating the expression of drought-responsive genes in each module. Among the four modules associated with responses to drought stress, the results indicated that GLYMA_04G209700, GLYMA_02G204700, GLYMA_06G030500, GLYMA_01G215400, and GLYMA_09G225400 have high degrees of interconnection and, thus, could be considered as potential candidates for improving drought tolerance in soybeans. Taken together, these findings could lead to a better understanding of the mechanisms underlying drought responses in soybeans, which may useful for engineering drought tolerance in plants.
Keywords: co-expression analysis, drought stress, Glycine max, meta-analysis, transcriptome
The article is available HERE, with full text.