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Abstract: Soil contamination by heavy metals is of particular concern, due to the direct negative 
impact on crop yield, food quality and human health. Although the conventional approach to mon-
itor heavy metals relies on field sampling and lab analysis, the proliferation in the use of portable 
spectrometers has reduced the cost and time of investigation. However, discrepancies in spectral 
data from different spectrometers increase the modeling time and undermine the model accuracy 
for spatial mapping. This study, therefore, took advantage of the readily accessible Landsat 7 data 
to predict and map the spatiotemporal distribution of ten heavy metals (i.e., Sb, Pb, Ni, Mn, Hg, Cu, 
Cr, Co, Cd and As) over a 640 km2 area in Belgium. The Land Use/Cover Area Frame Survey (LU-
CAS) database of a region in north-eastern Belgium was used to retrieve variation in heavy metals 
concentrations over time and space, using the Landsat 7 imagery for four single dates in 2009, 2013, 
2016 and 2020. Three regression methods, namely, partial least squares regression (PLSR), random 
forest (RF) and support vector machine (SVM) were used to model and predict the heavy metal 
concentrations for 2009. By comparing these models unbiasedly, the best model was selected for 
predicting and mapping the heavy metal distributions for 2013, 2016 and 2020. RF turned out to be 
the optimal model for 2009 with a coefficient of determination of prediction (R2P) and residual pre-
diction deviation of prediction (RPDP) ranging from 0.62 to 0.92, and 1.23 to 2.79, respectively. The 
measured heavy metal distributions along the river floodplains, at the highlands and in the low-
lands, were generally high, compared to their RF spatiotemporal predictions, which decreased over 
time. Increasing moisture contents in the floodplains adjacent to the river channels and the lowlands 
were the primary contributors to the reduction in the satellite reflectance spectra. However, topsoil 
erosion from rainfall, snowmelt as well as wind into the lowlands could have influenced the reduc-
tion in heavy metal spatiotemporal predicted values over time in the highlands. The spatiotemporal 
prediction maps produced for the heavy metals for the four different years revealed a good spatial 
similarity and consistency with the measured maps for 2009, which indicates their stability over the 
years. 
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1. Introduction 
Soil resources of Europe are being threatened by contaminants, particularly heavy 

metals (HMs) and petroleum hydrocarbons. Main sources of HM contamination in Euro-
pean soil are the application of fertilizers, pesticides and savage sludge, industrialization, 
mining activities and atmospheric deposition [1–3]. In agricultural soils, the application 
of fertilizers and pesticides are the major sources of HMs such as Cd, Pb and Cu [4]. Ac-
cording to Liedekerke et al. [5], up to 2.5 million contaminated sites exist in Europe, which 
illustrates the enormity of this challenge. Spatiotemporal variation in soil HMs distribu-
tion depends on the rate of anthropogenic activities, land use type, and parent material. 
Moreover, precipitation, evapotranspiration and erosion of topsoil layers also can contrib-
ute to the spatiotemporal distribution of HMs in soil [6]. The monitoring of soil quality by 
detecting some soil quality indicators, including HMs and hydrocarbon concentration, is, 
therefore, a critical task that merits attention, stakeholder participation and resources, 
with great significance for the environment and human health [7]. 

The concentration of HMs is an important soil quality indicator, whose conventional 
measurement approach involves field sampling and laboratory testing, using standard 
laboratory methods. However, these two procedures are exigent and expensive [8,9]. An 
alternate approach is the use of spectral data obtained from spectrometers to build pre-
diction models. Several studies have shown that using hyperspectral data is an easier and 
faster approach to retrieve soil HM concentrations by taking advantage of the wide elec-
tromagnetic wave range and high spectral resolution [10–12]. Likewise, some researchers 
build prediction models using informative bands within the visible and near-infrared and 
mid-infrared regions, which also correspond to the band range of remote sensing imagery 
(RSI). This is then followed by mapping the HM concentration(s) of an area, using the 
image data [12,13]. Most related studies employ spectroscopy data for building prediction 
models rather than RSI, due to discrepancies in spectral resolution, signal-to-noise ratio 
and differences in acquisition time between these two data formats [14–16]. However, a 
large amount of RSI is currently readily available from satellite and unmanned aerial ve-
hicles, although only few studies used RSI directly to retrieve HM concentrations 
[12,13,17]. Among the different kinds of RSI, Landsat 7 data are freely available with an 
approximate scene size of 170 km north-south by 183 km east-west. Landsat 7 consists of 
eight spectral bands with a spatial resolution of 30 m for Bands 1 to 7 and 15 m for Band 
8 (panchromatic). Nonetheless, Landsat 7 has fewer bands with less spectral information 
and lower resolution, compared to hyperspectral data or the portable and laboratory-
based visible, near-infrared and mid-infrared spectroscopies. These fewer input variables 
might affect the accuracy of HMs prediction, the goodness of which needs to be evaluated. 
Landsat imagery was successfully implemented for the prediction of soil carbon content, 
even at large scale, in the past [18,19]. However, few studies reported the implementation 
of Landsat imagery for spatiotemporal prediction of HMs in soil [13]. It is hypothesized 
that the few bands of Landsat 7 can provide sufficient accuracy of predicting HMs in soils 
if combined with chemometrics, multivariate linear regression or machine learning tools. 

Since HMs in the soil affects the spectral characteristics of the soil as well as the veg-
etative cover [17], soil samples with different HM concentrations will exhibit different 
spectral signatures. Accordingly, RS data can be used to discriminate HM concentrations 
in different soils. By combining RS data with multivariate linear regression approaches, 
such as multiple linear regression (MLR), principle component regression (PCR), or par-
tial least squares regression (PLSR), and machine learning methods, such as random forest 
(RF), support vector machine (SVM), and artificial neural networks (ANN), HM concen-
trations in soils can be estimated [12,13]. These models are data driven, independent of 
background knowledge and do not require a pre-assigned number of parameters [20]. 
Such a modeling combination will allow the evaluation of the spatiotemporal variation in 
key HMs in soils. It is hypothesized that accurate prediction models using Landsat data 
allows the evaluation of the spatio-temporal variation in key HMs.  
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This study aims at the evaluation of the spatio-temporal variations in ten HMs (i.e., 
Sb, Pb, Ni, Mn, Hg, Cu, Cr, Co, Cd and As) in soils at regional scale, using Landsat 7 
images for 2013, 2016 and 2020 and the best performing PLSR, RF and SVM models de-
veloped for Landsat 7 data collected in 2009. In order to achieve the project aim, the best 
performing prediction models were determined by comparing their prediction accuracy. 
The results from this investigation will be applied as a reference for future delineation of 
management zones in the study area for risk assessment analyses. 

2. Materials and Methods 
2.1. Study Area and Topsoil Database 

The study was conducted over an estimated area of 640 km2 in Northeastern Belgium 
between the cities of Ghent and Antwerp (Figure 1). A total of 435 soil sampling locations 
selected from LUCAS database were considered, with a 1 km sampling interval.  

 
Figure 1. Geographical map of study area. 

Ten HM concentrations (i.e., Sb, Pb, Ni, Mn, Hg, Cu, Cr, Co, Cd and As) were ex-
tracted from the Land Use/Cover Area Frame Survey (LUCAS) database, which is an EU-
wide project that monitors changes in the management and character of the land surface 
[21]. The LUCAS topsoil survey provides possibilities to obtain detailed information on 
soil cover in Europe, including HMs. With its sampling density (1site/200 km2), it is pos-
sible to create continuous maps for reliable spatial representation at 1 km resolution of 
HMs in topsoil of Europe [21]. Details of the soil sampling protocols and soil tests for the 
HM contents are available in the study of Tóth et al. [1]. The dominant reference soil 
groups across the study area are Cambisols, Arenosols and Anthrosols (Figure 2). Podzols 
and Gleysols occur mostly in the northwest and Retisols in the southeast. 
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Figure 2. Reference soil groups of the study area. World reference base (WRB) 40k indicates the soil map of the study area 
according to the international soil classification system is of a scale of 1:40,000. 

2.2. Satellite Data Acquisition and Processing 
In this study, satellite data (Landsat 7 imagery with 8 spectral bands) were used as 

independent variables for building prediction models. From USGS EarthExplorer, four 
single dates of the Landsat 7 imagery with zero cloud cover were downloaded in the order 
of 29-05-2009, 05-03-2013, 19-07-2016 and 31-07-2020. The digital number (DN) value of 
pixels corresponding to the soil sampling locations in each band was converted to spectral 
reflectance, using ArcMap 10.8.1.  

2.3. Data Preparation and Modelling  
Exploratory data analyses on the HM concentrations were performed on the 435 ex-

tracted points from the LUCAS dataset to identify outliers. Using the quartile–quartile 
approach, 4.8% of the dataset was detected as an outlier and removed. The new dataset 
was partitioned (training = 70% and test set = 30%) using the Kennard–Stone algorithm 
before modeling. The PLSR, RF and SVM models were developed for the soil HM concen-
trations and the spectral features of the Landsat 7 images. We iterated random 5-fold 
cross-validation 10 times to counteract both bias and overfitting. In training the models, 
the coefficient of determination (R2C), the root-mean-square error of calibration (RMSEC), 
residual prediction deviation (RPDC), and the ratio of performance to the inter-quartile 
range (RPIQC) were derived to assess how well the regressions fit the training set. The 
established models were validated using the test set in terms of R2p, RMSEP, RPDp, and 
RPIQ p. To compare the prediction performance of PLSR, RF and SVM models, the model 
classification scheme based on RPD and proposed by Viscarra Rossel et al. [22] was used. 
The best performing modeling method for 2009 was subsequently applied to the spectral 
features for 2013, 2016 and 2020 to assess its transferability and robustness, and allow 
evaluation of spatiotemporal variation in the studied HMs. 

As a linear multivariate regression analysis, PLSR was used. It is a popular multivar-
iate regression method that has a good capacity for estimating attributes resulting from 
the spectral characteristics of the soil [23]. It is a bilinear modeling method, where infor-
mation in the original x data is projected onto a small number of underlying (“latent”) 
variables called PLS components [24]. The y data are actively used in estimating the “la-
tent” variables to ensure that the first components are those that are most relevant for 
predicting the y variables. Interpretation of the relationship between x data and y data is 
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then simplified, as this relationship is concentrated on the smallest possible number of 
components. More detailed information about the PLS can be found in the work of Mar-
tens and Naes [25]. To determine the optimal number of latent variables, leave-one-out 
cross-validation (LOOCV) was used [26] to prevent over- or under-fitting the data, which 
may produce models with poor performance. Generally, a model with the highest cross-
validated R2C value and lowest RMSEC value was selected. 

As a linear method, SVM is a kernel-based learning method originated from statisti-
cal learning theory [27]. These learning methods use an implicit mapping of the input data 
into a high dimensional feature space defined by a kernel function [28]. The model reduces 
the complexity of the training data to a significant subset of so-called support vectors. In 
the current study, two kernels were adopted (second order polynomial and linear kernel) 
using the R package e1071, and a grid search was conducted by 10-fold cross-validation 
[29]. The optimal parameters of SVM were adopted so as to produce the best performing 
model that produced the smallest RMSEC.  

RF is a nonparametric and nonlinear classification and regression algorithm first pro-
posed by Ho [30] and further developed by Breiman [31]. It is based on a kind of learning 
strategy (ensemble learning) that generates many classifiers and aggregates their results. 
According to its algorithm, RF does not need any data pretreatment, which is one of its 
main advantages. Tree diversity guarantees RF model stability, which is achieved by two 
means: (1) a random subset of predictor variables is chosen to grow each tree, or (2) each 
tree is based on a different random data subset, created by bootstrapping, i.e., sampling 
with replacement [32]. The RF models were developed using the randomForest package 
in R with the optimal number of trees to be grown (ntree) and the number of predictor 
variables used to split the nodes at each partitioning (mtry) set to 500 and 3-times the de-
fault mtry value, respectively. The three modeling approaches (PLSR, RF and SVM) were 
developed with R [33], using the packages ‘prospectr’ [34], ‘e1071′ (Meyer et al., 2015), 
‘pls’ [35], ‘randomForest’ [36], and ‘chemometrics’ [37]. 

2.4. Geostatistical Prediction Method  
Ordinary kriging (OK) in ArcGIS software (ArcGIS version 10.7.1, ESRI, USA) was 

employed as the spatial prediction method for mapping the HM distribution in the study 
area. The input data for the OK were the predicted values of HMs in 2009, 2013, 2016 and 
2020, using the best performing models of 2009. Additionally, OK was employed to de-
velop maps of measured HMs. As a geostatistical tool, OK uses the distance between two 
points to predict the semivariance of the dependent variable. The inter-point semivari-
ances of the spatial data from a measured grid can be used to create a system of linear 
equations to interpolate the prediction at unmeasured points as a linear function of the 
measured points. Therefore, for an unmeasured point, linear weights are derived between 
the unmeasured point and all measured points in the network [38].  

In order to explain the variations in HMs over time and space, the study area was 
classified into three categories: lowlands denoted by ‘L’ (i.e., inland areas), highlands de-
noted by ‘H’ [i.e., points with elevation >15 m above the sea level (asl)] and river flood-
plains denoted by ‘R’ (i.e., all points located along the river channels in the study area on 
the southeast-northeast (SE-NE) boundary and close to the west boundary) (Figure 3 and 
Table A1). 
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Figure 3. Random selection of representative sampling points for spatiotemporal assessment of heavy metal concentra-
tions in the study area. Lowlands are denoted by ‘L’ (i.e., inland areas), highlands are denoted by ‘H’ [i.e., points with 
elevation >15 m above the sea level (asl)] and floodplains denoted by ‘R’ (i.e., all points located along the river channels in 
the study area). 

3. Results  
3.1. Soil Heavy Metal Contents 

Summary of descriptive statistics of HM concentrations from LUCAS database shows 
that the coefficient of variation varies between 0.24 and 0.33. Except for Sb, the distribution 
of HMs concentration showed heavy tails (kurtosis >3), as compared to the univariate nor-
mal distribution (kurtosis = 3). Table 1 summarizes the statistics for all ten HMs. 

Table 1. Descriptive statistics of the sampled heavy metal concentrations (HMs) (N = 435) from the Land Use/Cover Area 
Frame Survey (LUCAS) database for the study area in the Flanders region of Belgium. 

Heavy Metals 
(mg/kg) 

Min 1st Qu * Median Mean ± sd ** 3rd Qu Max kurtosis 

Sb 0 0.066 0.076 0.075 ± 0.025 0.090 0.131 1.80 
Pb 0 20.89 23.01 22.44 ± 5.81 25.87 30.34 7.47 
Ni 0 18.55 20.96 19.78 ± 5.22 22.54 30.93 6.87 
Mn 0 262.00 295.10 278.60 ± 73.34 318.70 407.10 6.97 
Hg 0 0.048 0.055 0.052 ± 0.014 0.061 0.076 5.36 
Cu 0 12.95 14.34 13.57 ± 3.50 15.35 19.08 7.74 
Cr 0 20.43 22.37 21.47 ± 5.66 23.91 31.38 6.94 
Co 0 3.34 3.72 3.56 ± 0.94 4.03 5.13 7.00 
Cd 0 0.114 0.126 0.120 ± 0.030 0.136 0.164 9.32 
As 0 3.27 3.72 3.58 ± 0.86 4.12 4.98 7.32 

* quartile; ** standard deviation. 

The Pearson correlations between the ten HMs at a significant level of 0.05 are shown 
in Figure 4. There are significant positive correlations between all HMs. However, apart 
from Cr (r = 0.65) and Co (r = 0.66), As reveals a weak positive correlation with the other 
HMs (r ≤ 0.47). Thus, except for As, there exist strong to very strong correlations (0.60 ≤ r 
≤ 1.0) between all HMs. 
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Figure 4. Correlation matrix for the ten soil heavy metals (HMs) at a significance level (p-value) of 0.05. The distribution 
of each heavy metal is shown on the diagonal. The bivariate scatter plots are displayed on the bottom half with the value 
of the correlation together with the significance level (as ***) shown on the top half. 

3.2. Comparison in Model Prediction Performance for 2009  
The comparison of model prediction performance for PLSR, RF and SVM (with the 

Gaussian kernel) for 2009 are presented in Figure 5. The two-machine learning algorithms 
(i.e., RF and SVM) considerably outperformed PLSR in the prediction of all ten HMs that 
were investigated. In comparison with SVM and PLSR, RF was the best performing model 
for all ten HMs (0.62 ≤ R2P ≤ 0.92; 1.63 ≤ RPD P ≤ 3.47) followed by SVM with radial kernel 
(0.33 ≤ R2P ≤ 0.87; 1.23 ≤ RPD P ≤ 2.79) and PLSR (0.06 ≤ R2P ≤ 0.85; 1.12 ≤ RPD P ≤ 2.57). 
Therefore, RF was selected and used for spatiotemporal prediction and mapping of the 
HMs for three subsequent years (i.e., 2013, 2016 and 2020). The independent model vali-
dation results for PLSR, RF and SVM are detailed in the Appendix A (Table A2). 
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Figure 5. Comparison of partial least squares regression (PLSR), random forest (RF) and support vector machine (SVM) 
model prediction performance. (a) Coefficient of determination—R2 (b) residual prediction deviation—RPD and (c) ratio 
of performance to the inter-quartile range—RPIQ. 

3.3. Spatiotemporal Prediction Performance of RF  
The performance of the optimal model (i.e., RF) for 2009 in predicting the HM con-

centrations for 2013, 2016 and 2020 using only the satellite band reflectance for these three 
years were analyzed. Figure 6 compares graphically the spatiotemporal prediction perfor-
mance for the three years as well as 2009. The prediction model statistics (values) are de-
tailed in the Appendix A (Table A3). Apart from Sb, Cd and As, the optimal model results 
of 2009 for Pb, Ni, Mn, Hg, Cu, Cr and Co outperformed those of 2013, 2016 and 2020. For 
the seven HMs (Pb, Ni, Mn, Hg, Cu, Cr and Co), the RF prediction performance was de-
creased over time (Figure 6). 

 
Figure 6. Comparison of the spatiotemporal prediction performance of the ten heavy metals (HMs) for 2013, 2016 and 2020 
using the best performing random forest (RF) model derived for 2009. (a) Coefficient of determination—R2 (b) residual 
prediction deviation—RPD and (c) ratio of performance to the inter-quartile range—RPIQ. 
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3.4. Spatiotemporal Distribution of Heavy Metals (HMs)  
Along the river channel on the SE-NE boundary (Figures 1 and 3), the measured con-

centrations of Sb, Pb, Ni, Mn, Hg, Cu, Cr, Cd and As increases steadily until after point R-
8, where the concentrations sharply decrease. However, the concentration of Co dips 
sharply at points R-5 and R-10, both of which are located outside the meander of the river. 
The measured HM concentrations in 2009 at the respective points along the river flood 
plains exceeded the RF spatiotemporal predicted values, and the latter gradually de-
creased over time.  

In the highlands (Figure 3), the measured concentrations of Pb, Cu and Cd were 
higher than those recorded in the lowlands (Figure 7). The measured concentrations of 
Mn and Cd at all the selected points in the highlands randomly alternated in concentra-
tions between high and low. In contrast, high concentrations of Sb, Ni, Mn, Cr, Co and As 
were recorded in the lowlands, compared to the highlands. However, in the highlands, 
the RF predicted concentrations of Sb, Ni, Mn Hg, Cr and Co exceeded the measured con-
centrations in 2009 and increased over time from 2013 to 2020.  

 



Remote Sens. 2021, 13, 4615 10 of 25 
 

 

 

 



Remote Sens. 2021, 13, 4615 11 of 25 
 

 

 

 



Remote Sens. 2021, 13, 4615 12 of 25 
 

 

 

 



Remote Sens. 2021, 13, 4615 13 of 25 
 

 

 

 



Remote Sens. 2021, 13, 4615 14 of 25 
 

 

 
Figure 7. Comparison in the spatiotemporal variation for the ten heavy metals (HMs) at 28 randomly selected points with 
an even representation of the topography in the study area. Lowlands are denoted by ‘L’ (i.e., inland areas), highlands are 
denoted by ‘H’ [i.e., points with elevation >15 m above the sea level (asl)] and floodplains denoted by ‘R’ (i.e., all points 
located along the river channels in the study area). 

The RF predicted concentrations of Cu and As were lower than those measured in 
the highlands and also decreased over time. Furthermore, the predicted concentrations of 
Pb and Mn in the lowlands also exceeded the measured values, although the former in-
creased over time from 2013 to 2020, while the latter was generally constant. However, 
the measured concentrations of Hg, Cu and As exceeded the RF predicted values in the 
lowlands, although there was no significant variation in the predicted values over time, 
particularly at L6, L7 and L8, which were located at low elevations (< 4.5 m asl) and near 
the base of the highlands. 

3.5. Comparison of Spatiotemporal Distribution Maps 
Maps of measured HMs (raw HM extracted data from the LUCAS raster file) and 

predicted HMs concentration were produced, using OK for interpolation for 2009, 2013, 
2016 and 2020 (Figures A1 and A2). Comparison between the measured and predicted 
maps shows a general decline in the similarity of the HM distribution over time indicated 
by the kappa values (Figure 8). However, anomalous observations were detected for Sb 
(kappa = 0.968) and Cd (kappa = 0.984) in 2016, during which a higher similarity (kappa) 
in the maps was realized. 
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Figure 8. Comparison in kappa values calculated between 2009 measured and the random forest (RF) predicted heavy 
metal (HM) concentration maps in 2009, 2013, 2016 and 2020. 

4. Discussion 
4.1. Soil Heavy Metal Contents 

In this study, we predicted and mapped the distribution of HM concentrations, using 
readily accessible Landsat 7 data over a 640 km2 area for years 2009, 2013, 2016 and 2020. 
The Land Use/Cover Area Frame Survey (LUCAS) database of the study area in the Flem-
ish region of Belgium was used to retrieve the variation in HMs distribution over time 
and space. The summary of descriptive statistics shows that the coefficient of variation 
(CV = sd/mean) varies between 0.24 and 0.33 (Table 1), indicating a moderate variation in 
the HM concentrations, according to Hu et al. [39]. Apart from Sb, the HMs distribution 
was leptokurtic (kurtosis >3), as compared to a univariate normal distribution (kurtosis = 
3). It indicates the impact of anthropogenic activities on the distribution of HMs in the 
study area. Factors that affect the HMs distribution in the study area could be pedological 
factors, agricultural activities, industrial pollution and other anthropogenic activities. Lv 
et al. [40] reported that anthropogenic activities influence HMs concentration in the soil. 
Ballabio et al. [41] reported an average concentration of Cu in European topsoil of 16.85 
mg/kg, where the main source of Cu in an agricultural soil was the intensive use of pesti-
cides. These results were in line with those of present study, where the average Cu con-
centration was 13.57 mg/kg. Similarly, Ballabio et al. [42] reported a median Hg concen-
tration of 0.038 mg/kg, which was lower than the 0.055 mg/kg median concentration of 
Hg in the present study at the non-polluted sites. These differences could be due to spatial 
variation in HMs distribution and variation in rate of anthropogenic activities at different 
sites. In another study, Temmerman et al. [43] reported a mean Pb concentration of 21.0 
mg/kg and a mean Cu concentration of 10.3 mg/kg in the Flanders region of Belgium, 
which did not show a significant difference with the measured concentrations of Pb (22.4 
mg/kg) and Cu (12.95 mg/kg) in the present study.  

Significantly positive correlations were observed between HMs (except for As), 
which indicate the similar source and origin of HMs in the study area (Figure 3). These 
results are in line with the findings of previous studies [44,45]. Cr, Co, Ni and Fe have 
siderophile affinity [46], among which Martín et al. [47] found high correlations. In an-
other study, based on significant positive correlations among Cd, Pb, Co, Mn, Cr and Hg, 
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Lv et al. [40] suggested the similar source of HM pollution in the soil. Positive correlation 
also explains the comparable modeling results obtained in this work. 

4.2. Comparison of Heavy Metals Prediction Performance of Models 
Comparison of prediction performance of PLSR, RF and SVM (with the Gaussian 

kernel) for the dataset of 2009 showed that the RF and SVM considerably outperformed 
the PLSR in HMs prediction (Figure 5). This result indicates the non-linear relationships 
between spectra and HMs. However, SVM is a linear regression algorithm, but kernels 
make it work for nonlinear scenarios. Functions of kernel in the SVM model return the 
inner product between two points in a suitable feature space; therefore, it defines the no-
tion of similarity, even in the high-dimensional spaces [48]. On the other hand, RF is a 
non-linear regression method; therefore, it can adequately address the non-linear relation-
ships, compared to PLSR [22]. It makes several different trees by the repeated selection of 
the subset, and each tree’s deviation is small with large variance. The effect of variance in 
the overall model is reduced by summing the trees [49]. However, PLSR is a linear regres-
sion model, which establishes a linear regression between independent and dependent 
variables by incorporating principal component matrices. It can partially remove the cor-
relations among variables [50]. In this study, among all three models, RF showed the best 
performance for all HMs (0.62 ≤ R2P ≤ 0.92; 1.63 ≤ RPD P ≤ 3.47). The suitability of a model 
for HM detection mainly depends on the inner relationships between spectra and soil 
HMs [51]. In a previous study, SVM and RF were reported as being the best prediction 
models for different soil characteristics, as compared to PLSR [52]. In contrast, a study on 
HM prediction by using Landsat 8 imagery showed that PLSR models performed better 
than the non-linear regression model (SVM and ANN) [13], which could be due to differ-
ent soil properties and land use types.  

We used RF for the spatiotemporal prediction of HMs for three subsequent years (i.e., 
2013, 2016 and 2020), due to its best prediction performance recorded, as compared to 
SVM and PLSR (Figure 5). Apart from Sb, Cd and As, the prediction efficiency of the RF 
model for the dataset of 2009 was higher than the datasets for 2013, 2016 and 2020. This 
outcome was reasonable because the RF model was developed using the dataset of 2009; 
hence, the RF model achieved the best results for that year. It also could be due to the 
changes in land use, soil moisture content over time and acquisition date (in 2013, 2016 
and 2020) that directly affect the Landsat reflectance spectra [53]. Therefore, it can be as-
sumed that reflectance values of 2009 were different than those obtained for 2013, 2016 
and 2020, which can affect the model performance. This means that for the farthest year 
from the sampling date, the lowest HM models’ prediction performance was recorded. 
However, the RF spatiotemporal prediction of Sb and Cd for 2016, and As for 2013 were 
the best, in contrast to 2009 and 2020, which in turn could be attributed to enhanced soil 
reflectance signatures from the Landsat 7 data during these periods (Figure 5). 

4.3. Spatiotemporal Distribution of Heavy Metals and Comparison of Maps 
The spatiotemporal distribution of HMS in the study area was classified into three 

categories: lowlands denoted (L), highlands (H) and river floodplains (R) (Figure 3). Meas-
ured concentrations of Sb, Pb, Ni, Mn, Hg, Cu, Cr, Cd and As increased steadily along the 
river floodplain before point R-8, where the HMs concentration sharply decreased. Com-
pared to L and H, the concentration of Cd at R was relatively higher, which could be due 
to organic and mineral particles sedimented during frequent flooding periods with low 
flowrates [54]. Other sources of Cd distribution in the study area could be the application 
of phosphate fertilizers and atmospheric deposition [55]. Cd input through fertilizer de-
pends on the rate of fertilizer application and the Cd:P2O5 ratio. In 2009, the average at-
mospheric Cd deposition in Belgium soil was reported to be 0.2 g ha−1 year−1 [56]. Moreo-
ver, since the 19th century, several smelting industries, such as Zn smelting, were located 
in the Flanders region, which produced emissions, causing diffused pollution of HMs in 
soil [57]. While the concentration of Co sharply decreased at R-5 and R-10, both these 
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points are located outside of the river meander. At these points, sedimentation is low, and 
the transportation of sediments is high, due to the high flow velocity of the river, which 
possibly accounts for the low Co concentration. Thus, the increase in SB, Pb, Ni, Mn, Hg, 
Cu, Cr, Cd and As inside the meander could be due to the low velocity of water and high 
sedimentation. In previous studies, the significant impact of water flow velocity and sed-
imentation on HMs transportation was reported [58,59]. Sediment parts (containing HMs) 
transported to lowlands are transferred with sediment fluxes to the North Sea, which can 
pollute the marine environment, endanger marine organisms and consequently nega-
tively affect the marine food chain [60]. 

The measured HM concentrations in 2009 at the respective points along the river 
channel exceeded the RF spatiotemporal predicted values, and the latter gradually de-
creased over time. Seasonal variation in the river volume directly affects the soil moisture 
content in the floodplains. Particularly, since the prediction was based primarily on Land-
sat 7 reflectance spectra as the independent variable, an increase in the river volume will 
also increase the soil moisture content in the adjacent floodplains, thus reducing the re-
flectance spectra. Therefore, the most probable reason accounting for the gradual decrease 
in the RF predicted HM concentrations along the river channel over time could be an in-
crease in the river volume during the period when the Landsat 7 images for 2013, 2016 
and 2020 were taken.  

In the highlands, the measured concentrations of Pb, Cu and Cd were higher than 
those recorded in the lowlands (Figure 7). The measured concentrations of Mn and Cd at 
all the selected points in the highlands alternated in concentration between high and low. 
In the study area, there were four gas stations located in the highlands and close to the 
points X-8, X-20 and X-21. Moreover, since Pb, Cu, Cd and Mn are trace metals in petro-
leum, a high concentration of these metals in the highlands originated most likely from 
soil contamination by the petroleum from the gas stations. In contrast, high concentrations 
of Sb, Ni, Mn, Cr, Co and As were recorded in the lowlands, compared to the highland, 
which could be due to erosion, transportation and the deposition of petroleum-contami-
nated soils from the highland areas into the lowlands aided by rainfall, snowmelt and 
wind. In the highlands, the RF-predicted concentrations of Sb, Ni, Mn Hg, Cr and Co ex-
ceeded the measured concentrations in 2009 and increased over time from 2013 to 2020 
due to the enhanced reflectance spectra, which could be attributed to a reduction in the 
soil moisture content in the highlands over time. The sun’s azimuth in the study area de-
creased from 156.6° (in 2013), 149.9° (in 2016) to 148.6° (in 2020), but in 2009 it was 146.6°. 
Weather patterns during data acquisition could be another reason. A decrease in the sun’s 
azimuth is reciprocal to an increase in solar insolation and, hence, an increase in evapo-
transpiration, which will eventually result in a reduction in moisture content. Therefore, 
a reduction in the soil moisture content in the highlands over time enhanced the soil re-
flectance spectra, which could account for the increase in RF-predicted concentrations of 
HMs [61]. The measured concentrations of Cu and As in the highlands exceeded the RF-
predicted concentrations. In the lowlands, the measured concentrations of Pb and Mn 
were lower than the RF-predicted values. It could be due to an increase in the reflectance 
spectra within the lowlands as a result of the decrease in the sun’s azimuth and the de-
crease in moisture content, and perhaps partially due to a decline of natural drainage. In 
the lowlands, RF-predicted values of Hg, Cu and As were lower, compared to the meas-
ured concentrations, and did not show significant differences among the years. Particu-
larly, L6, L7 and L8 were located at low elevations (<4.5 m asl) and near the base of the 
highlands. Such locations are prone to sedimentation from the highlands during rainfall 
and snowmelt when the topsoil is eroded, transported and deposited into the lowlands. 
Thus, the major driving factors of HMs accumulation in the region could be changes in 
moisture content due to evapotranspiration, variation in waterflow velocity, affecting 
HMs transportation from highlands to lowlands, sedimentation and changes in weather 
conditions over time, i.e., rainfall. However, apart from climate and topographic factors, 
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anthropogenic activities, such as agricultural and mining activities and land use manage-
ment, could be among major factors of HM accumulation in the study area. For example, 
the application of Cu-containing fungicide in agricultural soil is considered one of the 
major sources of Cu accumulation in European soils [62]. In another study, Qaswar et al. 
[63] found that the long-term application of fertilizers increased Cd, Hg and Cr concen-
trations in agricultural soils. Land use change alters the hydrological process and influ-
ences the transportation of HMs in soil [64]. Moreover, soil pH and organic matter distri-
bution significantly affect the accumulation of HMs in soils [42]. 

Maps were produced for measured and predicted concentrations of HMs, using OK 
interpolation method (Figures A1 and A2). The predicted maps show that similarity of 
HMs distribution was decreased over the time in the study area. These variations in the 
spatial distribution are attributed to changes in the weather conditions over time that 
change the Landsat 7 spectral reflectance [65]. Moreover, spatial similarity, evaluated ac-
cording to Kappa values of 2009 were higher than those obtained for 2013, 2016 and 2020 
(Figure 8). That might be due to the high accuracy of the RF prediction of the 2009 dataset, 
compared to the corresponding predictions in 2013, 2016 and 2020, using the 2009 models. 
Thus, the RF models for spatiotemporal prediction of HMs using Landsat 7 spectral re-
flectance could be regarded as the best method that can be used for monitoring and man-
agement of HMs contaminated sites. This will allow observing spatiotemporal differences 
and understand the reasons of these differences.   

5. Conclusions 
The testing of different models (including linear and non-linear) and model selection 

as well as unbiased evaluation of the models are imperative to achieve and improve the 
prediction accuracy of HMs in soils when using satellite data. In this study, we found that 
Landsat 7 satellite data coupled with RF show great potential for predicting and mapping 
the spatiotemporal distribution of Sb, Pb, Ni, Mn, Hg, Cu, Cr, Co, Cd and As in soils at 
regional scale. The R2P and RPD P achieved by RF for all the HMs ranged from 0.62 to 0.92, 
and 1.23 to 2.79, respectively. This could be classified as a high performing model for spa-
tiotemporal prediction in contrast to PLSR and SVM.  

High concentrations of the measured HMs were detected inside the meanders of the 
floodplains. These locations are characterized by low river flow velocity, which creates a 
conducive environment for high river sedimentation. Therefore, sediments with HMs ad-
sorbed onto their surface were readily deposited inside the meander, resulting in high 
HM concentrations. The RF predicted concentrations along the river channel decreased 
over time (from 2009, 2013, 2016 to 2020), largely due to the seasonal increase in the river 
volume, which also increased the moisture content in the floodplains and hence, reduced 
the reflectance spectra from the floodplains. In the highlands, the measured concentration 
of HMs exceeded the RF-predicted concentration over time, which is attributed to reduced 
Landsat 7 spectral reflectance, due to increases in the moisture content in the highlands. 
Moreover, high concentration of measured HMs in the highlands also could be due to the 
presence of gas stations in the highlands. Similarly, high concentrations of measured HMs 
were detected in the lowlands, but these decreased over time when predicted with the RF 
model. Comparison between the measured and predicted maps showed a general decline 
in the similarity of the HM spatial distribution over time in the study area. Thus, we con-
cluded that RF model for spatiotemporal prediction of HMs using Landsat 7 spectral re-
flectance could be regarded as an efficient method, which can be helpful to monitor the 
large HM contaminated areas for mitigation strategies. Future research will need to con-
sider multiple years before 2009 to ascertain the robustness of the RF model as well as 
assess the variations and similarities in the spatiotemporal distribution of the HMs in the 
study area.  
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Appendix A 

Table A1. Selected points for spatiotemporal mapping and their corresponding elevations (m) 
above sea level (asl). 

Sampling Points Elevation (m asl *) 
L-1 2.2 
L-2 12.7 
L-3 2.8 
L-4 4.2 
L-5 1.0 
L-6 4.3 
L-7 −2.3 
L-8 −1.0 
L-9 3.4 

L-10 1.8 
L-11 2.0 
L-12 1.8 
H-1 15.0 
H-2 23.9 
H-3 18.4 
H-4 29.3 
H-5 17.0 
H-6 30.4 
R-1 3.0 
R-2 0.0 
R-3 0.0 
R-4 3.9 
R-5 23.2 
R-6 13.8 
R-7 3.9 
R-8 −0.6 
R-9 2.3 

R-10 7.2 
* masl: meters above sea-level. 
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Table A2. Comparison in prediction performance of partial least squares regression (PLSR), random forest (RF) and sup-
port vector machine (SVM), using the independent set of the 2009 data. 

 PLSR RF SVM 

HMs LV R2p RMSEP (mg/kg)  RPD RPIQ R2p 
RMSEP 
(mg/kg) 

RPD RPIQ no. SV R2p 
RMSEP 
(mg/kg) 

RPD RPIQ 

Sb 7 0.41 0.02 1.30 1.00 0.81 0.009 2.33 1.80 242 0.67 0.012 1.74 1.34 
Pb 4 0.49 2.22 1.40 1.72 0.92 0.897 3.47 4.27 222 0.79 1.425 2.19 2.69 
Ni 4 0.41 2.37 1.31 1.27 0.75 1.549 2.01 1.95 268 0.56 2.055 1.51 1.47 
Mn 6 0.22 38.15 1.13 1.17 0.73 22.572 1.92 1.97 260 0.47 31.345 1.38 1.42 
Hg 5 0.54 0.01 1.47 1.49 0.87 0.003 2.82 2.85 248 0.74 0.005 1.99 2.01 
Cu 4 0.19 1.82 1.12 0.93 0.76 0.991 2.05 1.70 244 0.49 1.440 1.41 1.17 
Cr 2 0.06 3.20 1.04 0.74 0.62 2.038 1.63 1.17 256 0.48 2.101 1.39 1.13 
Co 2 0.12 0.50 1.07 0.99 0.65 0.321 1.69 1.56 259 0.33 0.440 1.23 1.14 
Cd 5 0.84 0.01 2.52 2.29 0.92 0.004 3.47 3.14 224 0.84 0.006 2.52 2.29 
As 5 0.85 0.22 2.57 2.86 0.91 0.16 3.42 3.81 231 0.87 0.203 2.78 3.10 

Table A3. Comparison in random forest (RF) models’ spatiotemporal prediction performance for the years 2009, 2013, 
2016 and 2020. 

HMs 2009 2013 2016 2020 

HMs R2p 
RMSEP 
(mg/kg) 

RPDP RPIQp R2p 
RMSEP 
(mg/kg) 

RPDP RPIQp R2p 
RMSEP 
(mg/kg) 

RPDP RPIQp R2p 
RMSEP 
(mg/kg) 

RPDP RPIQp 

Sb 0.81 0.009 2.33 1.80 0.82 0.01 2.38 1.84 0.83 0.01 2.46 1.89 0.82 0.01 2.37 1.83 
Pb 0.92 0.897 3.47 4.27 0.91 0.96 3.26 4.00 0.91 0.95 3.29 4.05 0.90 0.97 3.20 1.93 
Ni 0.75 1.549 2.01 1.95 0.73 1.61 1.93 1.87 0.74 1.58 1.97 1.90 0.72 1.65 1.89 1.83 
Mn 0.73 22.572 1.92 1.97 0.69 24.04 1.80 1.85 0.66 24.94 1.73 1.78 0.65 25.62 1.69 1.74 
Hg 0.87 0.003 2.82 2.85 0.85 0.00 2.59 2.62 0.85 0.00 2.62 2.66 0.84 0.00 2.53 2.56 
Cu 0.76 0.991 2.05 1.70 0.73 1.06 1.92 1.59 0.70 1.10 1.84 1.53 0.69 1.13 1.79 1.49 
Cr 0.62 2.038 1.63 1.17 0.53 2.26 1.47 1.05 0.57 2.17 1.53 1.09 0.54 2.24 1.48 1.06 
Co 0.65 0.321 1.69 1.56 0.61 0.34 1.60 1.48 0.64 0.32 1.67 1.54 0.59 0.35 1.56 1.45 
Cd 0.92 0.004 3.47 3.14 0.91 0.00 3.43 3.11 0.92 0.00 3.54 3.21 0.92 0.00 3.48 3.15 
As 0.91 0.16 3.42 3.81 0.92 0.16 3.57 3.98 0.91 0.17 3.41 3.41 0.91 0.17 3.30 3.67 
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Figure A1. Spatial distribution and comparison between measured (a) and random forest (RF)–predicted (b) maps devel-
oped with ordinary kriging (OK) for different heavy metals (HMs) over the study area for the year 2009. 
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Figure A2. Spatial distribution and comparison between measured and random forest (RF)–predicted maps using ordi-
nary kriging (OK) for different heavy metals (HMs) over the study area for the years 2013 (a), 2016 (b) and 2020 (c). 
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