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Abstract

Background: Mid-infrared spectroscopy (MIRS) is commonly recognized as a rapid and
high throughput measurement technology for numerous soil properties, given that appro-
priate prediction models are calibrated. Soil spectral libraries (SSL) may reduce effort and
costs for MIRS practical application.

Aims: To calibrate MIR-SSL-based prediction models for soil properties and to test their
applicability to independent sample sets at regional scale (e.g., for soil survey) and at field
scale (i.e., for precision agriculture, PA).

Methods: Spectra of 1013 arable topsoil samples of the European Land Use/Land Cover
Area Frame Survey 2009 (LUCAS) from Belgium, the Netherlands, Luxembourg, and Ger-
many formed the basis for the MIR-SSL. Leave-one-out cross-validation (LOOCV) via par-
tial least squares regression served to calibrate (1) generic prediction models including all
samples, and (2) stratified models for different parent materials. Test-set validation (TSV)
was conducted on samples from independent campaigns at (1) regional scale with a sam-
ple set from Schleswig-Holstein (Germany; n = 385) and (2) field scale for four individual
fields in Germany (n = 513).

Results: Generic LOOCV models successfully predicted soil organic carbon, total nitro-
gen, sand, silt, clay, carbonate, and pH. Calibration for available nutrients failed. The TSV
was successful for the regional sample set for all variables (2.5 < RPIQ < 5.9), except
for carbonate (RPIQ = 0). At field scale, the validation was highly variable for different
sites and parameters. Stratified models using soil parent material as auxiliary variable
improved only occasionally the applicability at field scale, that is, on single fields and only
for clay and carbonate.

Conclusions: Although the MIR-SSL in its present state cannot be recommended for nutri-

ent management, it provides valuable support for soil survey and PA.

KEYWORDS
diffuse reflectance spectroscopy, parent material, partial least squares regression, precision agricul-
ture, soil sensing, within-field soil heterogeneity

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. Journal of Plant Nutrition and Soil Science published by Wiley-VCH GmbH.

370 wileyonlinelibrary.com/journal/jpln

J. Plant Nutr. Soil Sci. 2022;185:370-383.

s9dIMe SSa20Y uad( 4oy 3dadxa ‘parpwiad Jou A|3d1s SI UoIINGUISIP pue asn-ay '[2202/90/+7L] uo -Ailebuny aueiys0) Ag ‘wodAs|im-Aieiqipuljuo//:sdiy woiy papeojumoq 'sgl ‘2202 ‘v29222SL



LUCAS-BASED MIR SOIL SPECTRAL LIBRARY

X
-

1 | INTRODUCTION

There is large demand for sensor techniques that provide consistent,
reliable, and inexpensive information on soil properties (Lobsey et al.,
2017; White et al., 2021). An application that relies on such soil data
is precision agriculture (PA). In PA, information on soil properties with
high spatial resolution is required to characterize the occurring within-
field soil heterogeneity and to subsequently address this heterogeneity
by spatially adapted management measures, such as variable rate fer-
tilization (Mulla & Khosla, 2016). Yet, the acquisition of soil information
with conventional laboratory analyses at the required spatial resolu-
tion for PA is too expensive and time consuming. In addition, spatially
high-resolution information is also required for other applications such
as environmental monitoring, modeling, and mapping (Viscarra Rossel
et al., 2006).

With regard to rapid and precise quantification of soil properties,
different soil sensing techniques made enormous progress in the last
few decades (Kuang et al., 2012; Viscarra Rossel & Bouma, 2016). The
optical measurement techniques, diffuse reflectance visible and near
infrared (vis-NIRS) and mid-infrared spectroscopy (MIRS), have proven
to predict various soil properties at a level of preciseness and accu-
racy that principally meets the requirements of various data demand-
ing applications such as PA (reviewed by Viscarra Rossel et al., 2006).

However, there are substantial differences between vis-NIRS and
MIRS, which cannot only be traced back to different spectral ranges
(vis-NIRS from 25,000 to 4000 cm~1 and MIRS from 4000 to 400 cm™1).
In the MIR range, intense fundamental molecular frequencies occur,
which are related to diverse organic and inorganic soil components,
while the vis-NIR region is dominated by overtones and combinations
of fundamental bands. Thus, in the MIR range, stronger and more dis-
tinct features appear (Viscarra Rossel et al., 2006). A number of stud-
ies have highlighted that MIRS outperforms vis-NIRS in predicting soil
properties at least in temperate regions (Bellon-Maurel & McBratney,
2011; Reeves lll, 2010; Vohland et al., 2014).

In this context, major advantages of vis-NIRS are (1) that in con-
trast to MIRS less effort for sample preparation for spectra acquisi-
tion is required and (2) that vis-NIRS has already proven to be gen-
erally appropriate for mobile measurements in the field (Mouazen
et al., 2007; Rodionov et al., 2015). These are important prerequisites
for the envisaged application in PA. Portable MIRS instruments have
only recently become available and only few studies with satisfactory
results recording MIR spectra in the field are published up to now (e.g.,
Dhawale et al., 2015; lzaurralde et al., 2013; Ji et al., 2016). However,
once adapted, portable MIRS will provide an attractive opportunity to
collect soil data for PA.

Many studies investigated in detail the relationship between diffuse
reflectance spectra and soil properties from underlying chemical per-
spective (e.g., Bornemann et al., 2010; Ellerbrock & Gerke, 2021). Nev-
ertheless, practical application in lab routine analyses or in field stud-
ies is still subjected to methodological restrictions. In order to derive
soil properties from MIR spectra (irrespective of benchtop or portable
instruments), modeled functions based on multivariate statistics are
used, such as the commonly applied partial least squares regression

(PLSR) method. To calibrate respective prediction models, correspond-
ing conventional soil analytical data (reference data) are needed. How-
ever, the collection of conventional soil data is time and cost intensive.
Hence, calibrating individual models for single fields requires efforts
that diminish the advantages of MIRS over conventional methods. In
general, soil spectral libraries (SSL) reduce this effort, provided that the
performance of SSL models fulfills the demands of the envisaged appli-
cation.

The potential of vis-NIR- and MIR-SSL on global, continental,
national, and local scales has already emphasized in several studies
(vis-NIR-SSL; e.g., Aradjo et al., 2014; Téth et al., 2013; Viscarra Rossel
et al., 2016; Wetterlind & Stenberg, 2010; MIR-55L: e.g., Breure et al.,
2022; Clairotte et al. 2016; Hicks et al., 2015; Terhoeven-Urselmans
et al., 2010; Viscarra Rossel et al., 2008; Wijewardane et al., 2018). To
our knowledge, the largest vis-NIR-SSL in Europe is based on approx-
imately 20,000 topsoil samples from the European Land Use/Land
Cover Area Frame Survey (LUCAS) which was carried out in 2009
(Orgiazzi et al., 2018; Téth et al., 2013). The LUCAS survey is partic-
ularly characterized by consistency of sampling and analysis of basic
chemical and physical soil properties (Téth et al., 2013). The most com-
prehensive MIR-SSL (n = 4329 MIR spectra) against a geochemical
background at a European scale was generated in the framework of the
Geochemical Mapping of Agricultural Soils and Grazing Land of Europe
(GEMAS) project (Reimann et al., 2012).

Numerous studies were conducted on MIR-5S5L with detailed con-
sideration of spectral response of the underlying soil properties (e.g.,
Terhoeven-Urselmans et al., 2010; Viscarra Rossel et al., 2008). How-
ever, there is still a need for research on the applicability of MIR-SSL-
based prediction models. Especially under European agro-ecological
conditions, the applicability of MIR-S5L-based prediction models to
independent sample sets from smaller scales has not yet been stud-
ied in detail. Against this background, the goal of this study was to test
the applicability of MIRS-SSL-based prediction models using the entire
(generic prediction models) or selected set of MIR-SSL samples (strat-
ified prediction models) to characterize soil properties of independent
sample sets that originated from different institutions and projects in
order to serve for public soil survey (regional scale) or PA purposes
(field scale).

In this study, we recorded MIR spectra of arable topsoil samples
from Belgium, the Netherlands, Luxembourg, and Germany which were
collected during the LUCAS survey 2009 to build the MIR-SSL. The
international LUCAS survey was conducted by the European Union and
therefore ensures the same standards beyond methodological deci-
sions. To the best of our knowledge, this study represents the first
study using LUCAS samples and data for MIR spectroscopy.

The hypotheses of this study are as follows: (1) generic prediction
models calibrated based on the spectra and reference data of the MIR-
SSL (LUCAS sample set) via PLSR are capable of predicting basic phys-
ical and chemical soil properties with similar accuracy to conventional
soil analytical methods. This is independent of the scale on which these
prediction models are applied. (2) Calibrating stratified models by using
the soil parent material as auxiliary variable can improve the applica-
bility of MIR-SSL at local scale for predictions of parameters that are
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TABLE 1 Parent materials and reference soil groups observed in field investigations (acc. to IUSS Working Group, 2015) at the four individual

fields under study

Location Parent material Reference soil groups

Ascheberg Cretaceous marls partially covered by Saalian glacial till, aeolian Cambisols, Stagnosols
sand, and fluvial sediments

Bolingen Pleistocene periglacial slope deposits consisting of Weichselian loess Cambisols, Luvisols,
with variable amounts of weathered Devonian sand-, silt-, and Stagnosols
claystones and scattered Tertiary basalt bombs

Gorzig Weichselian loess Chernozems, Regosols

Wilmersdorf Glacial till, partly covered with Weichselian glaciofluvial sands Arenosols, Retisols,

Luvisols, Planosols

more or less directly related to soil parent material. As a consequence,
applicability of an MIR-S5L for PA could be promoted by an improved
capability to characterize within-field soil heterogeneity.

2 | MATERIALS AND METHODS
2.1 | Soil samples

The Institute for Environment and Sustainability of the Joint Research
Center (JRC) in Ispra (ltaly) provided subsamples of 1013 arable top-
soils (0-20 cm) from the LUCAS survey in 2009 which were spatially
distributed over Germany (n = 895), Belgium (n = 31), the Netherlands
(n = 87), and Luxembourg (n = 1). In the LUCAS survey, the number of
samples for Belgium, the Netherlands, and Luxembourg was generally
lower than for Germany. In addition, the proportion of arable samples
for these countries was lower than for Germany (To6th et al.,, 2013).
All soil samples had already been analyzed by conventional methods
as part of the LUCAS survey (for details see Toth et al.,, 2013). In this
study, 2 g of each LUCAS soil sample were submitted to MIR spectra
recording.

To predict properties of independent target samples, independent
surveys at regional and field scales without direct spatial coincidence
with the LUCAS survey were selected. Therefore, 385 arable topsoil
samples (0-30 cm) were provided by the State Agency for Agriculture,
Environment and Rural Areas (LLUR) of Schleswig-Holstein, Germany.
This archived sample set representatively covered the entire arable
land of the federal state Schleswig-Holstein (S-H; 15,800 kmZ2). Com-
pared to the LUCAS sample set, the spatial sample density for S-H was
higher for the LLUR sample set (LUCAS: n= 36 samples from S-H). Geo-
graphic coordinates were not available for the individual LLUR samples
for data protection reasons.

To test the MIR-55L models at field scale, 513 topsoil samples
(0-30 cm) from four arable fields (2.6-30 ha) in different German
regions were investigated (in the following denoted as field scale val-
idation [FSV] sample set). These fields were located in Ascheberg
(51°45'32"N, 7°34'47"E; n = 115), Bolingen (50°34’1"N, 7°5'5 "E;
n = 71), Gorzig (51°39'50"N, 11°59'48"E; n = 112), and Wilmers-
dorf (53°6'39"N, 13°54'21"E; n = 217) and were sampled within the
“BonaRes-145" PA project at high spatial resolution to characterize

within-field soil heterogeneity. The parent materials and reference soil
groups observed in the field are summarized in Table 1.

Figure 1 localizes the four FSV sample sets and the federal state S-H
(LLUR) against the background of the European Parent Material Map
(EPM; part of the Soil Regions Map of the European Union and Adja-
cent Countries 1:5 000 000, freely accessible from the German Federal
Institute for Geosciences and Natural Resources [BGR] via web map
service; Bundesanstalt fir Geowissenschaften und Rohstoffe, 2005).
For the LLUR samples, no geographic information was available (see
above). The spatial distance of the FSV sample sets to the nearest
LUCAS sample was between 8 (Ascheberg) and 23 km (Wilmersdorf).

2.2 | Conventional soil analyses

The conventional soil analyses of the LUCAS sample set were per-
formed by a single laboratory on behalf of the JRC and were made avail-
able online on the website of the European Soil Data Centre (ESDAC,
2013). The LLUR provided analytical data along with the 385 soil sam-
ples from Schleswig-Holstein, which were in parts supplemented and
extended by own analyses.

The FSV samples were analyzed in the frame of the BonaRes-145
project. For all sample sets, the applied analytical methods and a sum-
mary of statistics for the conventional soil analyses are presented in
Table 2.

2.3 | Spectroscopic measurements

In preparation for spectral measurements, 2 g of air dried, sieved
(<2 mm) soil per sample were ground in a ball mill to a particle size
<500 um. About 20 mg of ground soil were filled in fivefold repetition
into microtiter plates and compacted with a plunger to ensure a
plain and dense surface. Diffuse reflectance mid-infrared Fourier
transform (DRIFT) spectroscopy was performed in the laboratory with
a Bruker Tensor 27 spectrometer, equipped with an HTS-XT device
for automated high-throughput measurement (Bruker Optik, Ettlin-
gen, Germany). The spectrometer operated with a liquid N;-cooled
mercury-cadmium telluride (MCT) detector and a broadband KBr
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FIGURE 1 Location of data sources displayed on the section of the European Parent Material (EPM) Map. The map was used to stratify the
LUCAS sample set for subsequent model calibration. Black triangles indicate investigated arable topsoil samples of the Land Use/Land Cover Area
Frame Survey (LUCAS) survey (n = 1013). The federal state Schleswig-Holstein (S-H), from where the LLUR sample set originates, is framed in red.
Locations of LLUR samples (n = 385) could not be illustrated because geographic coordinates were not available for privacy reasons. The four
individual fields under study were As = Ascheberg, B6 = Bolingen, Go = Gorzig, and Wi = Wilmersdorf. The map legend contains only the EPM
classes being relevant for this study. For further information, refer to Bundesanstalt fir Geowissenschaften und Rohstoffe (2005)

beam splitter. For each repetition, 120 scans at a resolution of 4 cm™1
and a spectral range of 7500-550 cm™! were carried out.

2.4 | Spectra treatments and calibration of
prediction models

The calibration of prediction models to derive soil properties from MIR
spectra was carried out with the commercial spectroscopy software
OPUS Quant (Bruker Optik) after averaging the repetitions of (calcu-
lated) absorbance spectra. This study was focused on the MIR range.
Therefore, the spectral range was narrowed to 3800-550 cm™L. Prior
to model calibration, a principal component analysis (PCA) was car-
ried out for the first two scores (PC-1 and PC-2) with centered data
and a correlation matrix using spectra of all sample sets (LUCAS, LLUR,

Ascheberg, Bolingen, Gorzig, and Wilmersdorf). The PCA was carried
out in order to identify similarities or differences in spectral character-
istics between the investigated sample sets. Model calibration was per-
formed using partial least squares regression (PLSR), which was based
on the PLS1 algorithm (Brereton, 2018) and leave-one-out cross vali-
dation (LOOCV), adefault method in OPUS Quant (Ludwiget al., 2019).
PLSR was used since it is one of the most common and reliable chemo-
metric techniques for calibration of spectroscopic prediction models
and has been shown to be suitable to derive various soil properties
from soil spectra (e.g., Soriano-Disla et al., 2014; Viscarra Rossel et al.,
2006).

The number of latent variables with smallest root mean square
error of cross-validation (RMSECV) was selected for each model.
Analogous to the study of Ludwig et al. (2019), the default maximum
number of 10 latent variables in OPUS Quant was used in order to
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TABLE 2 Statistical summary of the observed soil properties for all investigated sample sets

LUCAS LLUR Ascheberg Bélingen Gorzig Wilmersdorf
n=1013 n=385 n=115 n=71 n=110 n=2172/59"
Sand (%)°
Mean (median) 41(37) 55(62) 62(67) 12(10) 17 (16) 64 (63)°
Min-max 1-97 1-96 21-80 7-23 13-33 47-82°
SD; QR 30; 60 27;46 14; 16 4,4 4,4 8;10°
Silt (%)°
Mean (median) 42(42) 33(29) 14(14) 57(59) 61(62) 26 (26)°
Min-max 1-88 2-78 9-22 37-70 49-66 15-45°
SD; QR 23;41 19;31 34 8;12 33 7; 60
Clay (%)°
Mean (median) 17 (16) 12(8) 22(17) 30(26) 20(20) 8(8)°
Min-max 1-56 0-48 9-55 18-57 15-23 2-18°
SD; QR 11;16 9:12 12;13 9,12 11 3;4°
SOC(gkg™)!
Mean (median) 16.7 (15) 15.7(14.1) 17.8(16.2) 12.6(11.9) 16.7 (16.4) 8.9(8.7)
Min-max 4.3-39.5 1.8-39.7 12.2-32.9 9.4-19.0 13.6-21.9 4.6-20.0
SD; QR 6.8;8.0 6.9;7.9 44,59 22,29 1.7;20 2324
Niotat (B kE™)
Mean (median) 16(1.5)¢ 1.4(1.3)f 1.7 (1.5)f 1.3(1.3)f 1.4(1.4) 0.9 (0.9)f
Min-max 0.4-3.9 0.2-41 1.1-33 1.0-1.9 1.2-1.7 0.4-2.0
SD; QR 0.5;0.6 0.5;0.5 0.5;0.6 0.2;0.2 0.1;0.1 0.2;0.3
CaCO; (gkg )2
Mean (median) 19(1) 3(0) 11(0) 0(0) 0.3(0) 8(0)
Min-max 0-715 0-46 0-191 0-0 0-9 0-81
SD; QR 57;6 9:0 28,7 n.d.; n.d. 1,0 17,6.5
pH (CaCl,)"
Mean (median) 6.24(6.37) 5.73(5.60) 6.29(6.28) 6.01(6.06) 6.46(6.50) 6.24(6.20)
Min-max 3.42-7.61 3.60-7.60 4.48-7.42 5.08-6.53 5.56-7.34 4.10-7.80
SD; QR 0.86; 1.39 1.00; 1.70 0.81;1.59 0.32;0.27 0.39;0.66 1.08;2.10
P, (mgkg™)
Mean (median) 58 (54)!
Min-max 0-212 n.d. n.d. n.d. n.d. n.d.
SD; QR 30; 38
Ko (mgkg™)
Mean (median) 221(185)
Min-max 0-1724 n.d. n.d. n.d. n.d. n.d.
SD; QR 163,177

Abbreviations: CaCOg, calcium carbonate; IQR, interguartile range; n.d., not determined; N .., total nitrogen; K,,,, plant available potassium; P,,,, plant avail-

able phosphorus; SOC, soil organic carbon.
2bTwo sample subsets: only sample subset (b) was analyzed for particle size distribution.
“Combined sieve/pipette method (1SO, 1998a).

dDetermined by the difference of total carbon (elemental analysis; 1SO, 1995a) and inorganic carbon.
“Modified Kjeldahl (ISO, 1995b).
'Elemental analysis (1SO, 1998b).

£Gas volumetric determination (150, 1994b).
hPotentiometric measurement (1SO, 1994a).
iOlsen P (ISO, 1994c).

INH4OAc (USDA-NRCS, 2004).
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avoid overfitting. To eliminate the physical effect of light scattering and
to improve model performance, different mathematical treatments of
the spectra were tested: none, first derivative, standard normal variate
(SNV), multiplicative scatter correction (MSC), first derivate + SNV,
first derivative + MSC, and second derivative. The default settings
in OPUS Quant were used for all of these treatments. For spectra
treatments that included the calculation of derivatives, this meant 17
data points for smoothing. The treatment method with best predictive
power was selected for each prediction model. The predictive power
was evaluated by calculating R2, the RMSECV or root mean square
error of prediction (RMSEP), the bias, and the ratio of performance to
interquartile range (RPIQ). The RPIQ relates the prediction error to
the variation of observed values and was calculated from interquartile
distance of the observed values divided by RMSECV or RMSEP (Bellon-
Maurel et al., 2010). We used the RPIQ instead of the widely used
RPD because RPIQ relies on the normality assumption of the variable
distribution over the sample set, whereas these values obtained by
the RPD on skewed sample values are misleading (Bellon-Maurel et al.,
2010). In general, as RPIQ values increase, so does the performance of
the model. The threshold of RPIQ <1.89, which was used in the study
of Ludwig et al. (2019), was used to unravel unsuccessful predictions.
However, whenever predictions were evaluated by these values, it
should be noted that the thresholds are not based on any theory or
experiment and the usefulness of a model should always be defined in
its specific context (Ludwig et al., 2019). With regard to the hypotheses
of the current study, the threshold of 1.89 was considered as an
appropriate criterion for evaluating the predictions.

2.5 | Generic and stratified modeling

The spectra and reference data of the LUCAS sample set were used to
calibrate generic and stratified prediction models. The generic models
served to predict soil properties in all independent validation sample
sets (LLUR and FSV). For validation at field scale (FSV sample sets), that
is, for the envisaged future PA application, stratified models were cal-
ibrated with consideration of the parent material as auxiliary variable.
Unfortunately, this was not feasible at the regional scale because coor-
dinates were not available for the LLUR samples. Prior to model cali-
bration, the degree of colinearity of the reference data was verified by
determining the Pearson correlation coefficient (r) after inspection for
normality. The calibration of generic prediction models was carried out
on all 1013 LUCAS spectra and corresponding reference data, while
stratified models were calibrated separately for different soil parent
materials (Bundesanstalt fiir Geowissenschaften und Rohstoffe, 2005;
see Figure 1). For this purpose, the respective EPM classes according
to the EPM map classification (Figure 1) were assigned to the LUCAS
samples and FSV sample sets. In total, three different EPM classes
were relevant for the four FSV sample sets. Though, there were differ-
ences in the number of LUCAS samples assigned to the EPM classes: (1)
glaciofluvial deposits (EP-5, njycas) = 206), (2) loess (EPM-8, nucas)
= 180), and (3) morainic deposits (EPM-4, nucas) = 95). Separate
(stratified) prediction models for sand, silt, clay, and carbonate (CaCO3)

were calibrated for each of these three LUCAS (sub)sample sets. These
soil properties were chosen because they are closely related to parent
material. The EPM classes derived from the map (Figure 1) were consis-
tent to observed parent material by field investigations (Table 1) with
only small variation in detail.

3 | RESULTS
3.1 | Characteristics of the mid-infrared spectra

The calibration samples (LUCAS) revealed large variability in spec-
tral characteristics (e.g., intensities and distribution of peaks). This
became particularly clear when the difference between minimum and
maximum absorbance in the LUCAS spectra was investigated. For
example, in the range of 3800-3600 cm™1, 2900-2800 cm™1, and
2600-2400 cm™1, obvious differences were found in peak intensities
(Figure 2A). A large diversity of spectral characteristics could also be
documented on the basis of the first two PCA scores (PC-1 and PC-
2; Figure 2B). No striking deviations in peak appearance and spec-
tral domain were found between the LUCAS and the LLUR validation
samples. This became obvious by comparing the averaged spectra and
the PCA scores (Figure 2A,B). There also appeared no obvious dif-
ferences in spectral domain between the LUCAS and the FSV sample
sets. Only very few samples from Ascheberg, Bolingen, and Wilmers-
dorf were outside the spectral domain of the LUCAS sample set. Over-
all, Wilmersdorf samples were represented by the smallest number of
LUCAS samples.

Within the FVS sample set, the four sub-sets from the individual
fields differed in terms of spectral characteristics. For example, differ-
ences in the occurrence and intensity of peaks in the range of 3800-
3600 cm™1, 2900-2800 cm™1, and 2600-2400 cm™! were observed
(Figure 2A). The diversity between these fields was also reflected by
different spectral domains they covered in the scores plot (Figure 2B).

3.2 | Calibration of generic LUCAS-based
prediction models

The indicators of performance for calibration of generic LUCAS predic-
tion models are listed in Table 3. Large R? and RPIQ were achieved for
six out of nine soil properties (entire range of values: RZ = 0.23-0.98
and RPIQ = 0.7-9.4) with largest R? for CaCO, and RPIQ for sand. The
RPIQ for CaCO5 was small (RPIQ = 0.7) and below the threshold for
successful prediction according to Ludwig et al. (2019). For plant avail-
able phosphorus (P.y) and potassium (K.,), RZ and RPIQ were small
and also below the threshold for successful prediction (R2 = 0.23-0.44
and RPIQ = 1.4-1.5). With regard to particle size, smallest RMSE was
achieved for clay content.

It must be taken into account that analyzed soil properties of the
LUCAS sample set were related to each other. A strong correlation was
found, for example, for silt and sand (RZ = -0.95) as well as for total
nitrogen (Niota1) and soil organic carbon (SOC; R2 = 0.86).
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FIGURE 2 (A) Averaged mid-infrared spectra of the individual
investigated sample sets and minimum and maximum absorbance of
the 1013 Land Use/Land Cover Area Frame Survey (LUCAS)
mid-infrared spectra. (B) Scores plot of the principal component
analysis (first two principal components: PC-1 vs. PC-2) for untreated
(raw) spectra of all sample sets under study

3.3 | Validation of generic LUCAS prediction
models with an independent regional sample set
(LLUR samples)

The results of the validation of generic LUCAS prediction models
(Table 3) with the independent regional LLUR sample set are shown in
Figure 3. This validation was performed for all properties under study
except for P, and K, because the calibration of generic LUCAS mod-
els had already failed.

As shown in Figure 3, large RZ and RPIQ were achieved for sand, silt,
clay, SOC, Ny, and pH (CaCl,). The R? ranged from 0.83 (silt) to 0.92
(SOC). Large RPIQ (>2.5) was achieved, except for CaCO;. However,
in most cases, RZ and RPIQ for validation were smaller than for cali-
bration, and predictions were more biased. Only SOC and pH (CaCl,)
revealed larger RZ and RPIQ.

TABLE 3 Model performance indicators of leave-one-out cross
validation (LOOCV) for the Land Use/Land Cover Area Frame Survey
(LUCAS) sample set under investigation (n = 1013). All samples
originate from arable topsoils from Belgium, the Netherlands,
Luxembourg, and Germany of the LUCAS topsoil survey in 2009

Leave-one-out cross validation

Soil property  Preprocessing LV R? RMSECV Bias RPIQ

Sand (%) 2" der. 10 096 64 00 94
Silt (%) 2" der. 10 093 6.3 00 65
Clay (%) 1tder.+SNV 9 095 24 00 67
SOC(gkg!)  1stder. 10 089 23 00 35
Ny (gkgl)  1stder. 10 089 0.18 000 33
CaCO,(gkg!) 1stder.+MSC 9 098 83 00 07
pH (CaCly) 1% der. 10 084 035 000 40
Pai(mgkg™) 2"der. 8 023 265 00 14
Ko (mgkg™) 2" der. 9 044 122 0 15

Abbreviations: CaCOj5, calcium carbonate; LV, latent variables; MSC, multi-
plicative scatter correction; N, total nitrogen; K, plant available potas-
sium; P,,, plant available phosphorus; R2, coefficient of determination;
RMSECV, root mean square error of cross validation; RPIQ, ratio of perfor-
mance to interguartile range; SOC, soil organic carbon; SNV, standard nor-
mal variate; 1st der., first derivative; 2nd der., second derivative.

3.4 | Validation of generic LUCAS prediction
models with the independent local sample sets of
four individual fields (FSV samples)

The generic LUCAS models served to predict contents of sand, silt,
clay, SOC, Nygta1, CaCOj3 as well as pH (CaCls) for the FSV sample sets
(Ascheberg, Bolingen, Gorzig, and Wilmersdorf) with the aim of char-
acterizing the within-field variability of these properties. It should be
noted that the FSV sample sets revealed different extents of variability
(Table 2). Overall, small RZ and RPIQ were achieved for fields with low
within-field variability of the respective soil property (RZ = 0.00-0.61;
RPIQ = 0.0-1.1; Table 4, footnote 2). For fields and properties with
more pronounced within-field heterogeneity, predictions were better
(RZ from 0.55 for sand prediction at Wilmersdorf to 0.91 for clay pre-
diction at Ascheberg). Smallest RPIQ was achieved for CaCO; predic-
tion at Ascheberg (RPIQ = 0.6) and largest for pH (CaCl,) prediction at
Wilmersdorf (RPIQ = 4.5).

3.5 | Calibration and validation of stratified
prediction models

Calibration of stratified prediction models for the three relevant EPM
classes (EPM-4, EPM-5, and EPM-8) and four soil properties that are
closely related to parent material (sand, silt, clay, and CaCO3) yielded
R? between 0.80 for silt (EPM-8) and 0.98 for CaCO5 (EPM-5 and EPM-
8, results not shown). Small RPIQ was only achieved for calibration of
CaCOj prediction models (RPIQ = 0.6-1.3). For all other EPM classes
and soil properties, RPIQ was =1.9. Overall, the stratified models for
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Independent validation of generic Land Use/Land Cover Area Frame Survey (LUCAS)-based prediction models with the regional

sample set from Schleswig-Holstein (LLUR). Independent validation was performed for (A) sand, (B) silt, (C) clay, (D) soil organic carbon (SOC), (E)
total nitrogen (N¢ota1), (F) calcium carbonate (CaCO3), and (G) pH (CaCl,)
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TABLE 4 Performance of different generic Land Use/Land Cover
Area Frame Survey (LUCAS)-based prediction models to predict soil
properties at individual fields (field scale validation)

Ascheberg  Bolingen  Gorzig Wilmersdorf
n=115 n=71 n=110 n=217/59°
Sand (%)
R? 0.79 0.00 0.04 0.55
RMSEP (%) 7.7 8.0 83 5.7
Bias (%) -4.0 40 47 -17
RPIQ 21 0.5 0.5° 1.8
Silt (%)
R? 0.16 0.80 0.03 0.25
RMSEP (%) 5.8 7.7 10.0 5.9
Bias (%) -0.8 -5.6 -8.1 0.1
RPIQ 072 1.6 0.32 1.00
Clay (%)
R? 0.91 0.89 0.36 0.88
RMSEP (%) 45 35 1.2 12
Bias (%) 1.8 0.5 -0.1 -0.6
RPIQ 2.9 3.4 0.8° 33"
SOC(gkg™)
R? 0.86 0.78 0.61 072
RMSEP (gkg!) 1.8 1.5 20 17
Bias(gkg 1) 0.0 1.1 16 0.0
RPIQ 3.3 1.9 1.0b 14
Nyora (8 kg™)
R2 0.90 0.53 0.56 076
RMSEP (gkg!) 0.2 0.2 0.1 0.1
Bias (gkg 1) -0.1 0.1 0.0 0.0
RPIQ 3.0 1.1° 102 21
CaCO; (gkg™)
R? 0.96 n.d. 0.56 0.98
RMSEP (gkg!) 118 1.0 6.4
Bias(gkg1) -5.9 -0.2 -35
RPIQ 0.6 0.0b 1.1
pH (CaCl,)

R2 0.83 0.62 0.82 0.85
RMSEP 0.49 0.28 0.20 047
Bias -0.36 -0.17 0.06 -0.14
RPIQ 32 1.0 33 45

Abbreviations: n.d., not determined; RZ, coefficient of determination,
RMSEP, root mean square error of prediction; RPIQ, ratio of performance
to interquartile range.

aSample subset: sand, silt, and clay content were only analyzed for 59 of the
217 topsoil samples from Wilmersdorf.

bFields with unsuccessful prediction of soil property associated with low
within field heterogeneity (based on small IQR). For IQR values see Table 2.

3 ® Ascheberg
T = Bolingen
§ 7 J u Gorzig
% = Wilmersdorf
g1
o
o
20
]
o
o -1 A
-2 -

Sand (%) Silt (%)

Clay (%) CaCOs (g kg™)

FIGURE 4 Effect of using stratified prediction models instead of
generic prediction models on the ratio of performance to interquartile
range (RPIQ). Stratified prediction models were calibrated with Land
Use/Land Cover Area Frame Survey (LUCAS) samples allocated to the
map units of the European Parent Material (EPM) Map (see Figure 1).
Generic prediction models were calibrated with the entire LUCAS
sample set (n = 1013). The effect of using stratified prediction models
was tested for contents of sand, silt, clay, and calcium carbonate
(CaCOs) at the four individual fields Ascheberg, Bolingen, Gorzig, and
Wilmersdorf

the respective EPM classes were less accurate than the generic models
(see Table 3).

Finally, these stratified LUCAS prediction models were validated by
predicting soil properties at local scale. This step yielded largely dif-
fering success for the different fields (Figure 4). In comparison to the
generic models, performance of predictions for sand and silt declined at
any field. The only considerable improvements in RMSEP (not shown)
and RPIQ were achieved for clay prediction at Bélingen and for CaCO3
prediction at Wilmersdorf.

4 | DISCUSSION

4.1 | Suitability of the LUCAS sample set for
building a mid-infrared spectral library

The preselection of arable soils narrowed the overall variability of
soil properties. For example, SOC content varies less than it would
be expected when grassland and forest soils were included. However,
due to the large number of LUCAS samples under study and the
size of the sampled area, soil properties revealed large variability.
Thus, the samples of the MIR-S5L are considered representative for
arable soils in the study region. The pronounced spectral domain and
the striking spectral differences between minimum and maximum
spectrum of LUCAS samples indicate a large variability of the sample
characteristics. For example, variability in the spectra between 3600
and 3800 cm™! can be attributed to variability in clay mineralogy
(Clark et al., 2003). The spectral variability at 2920 and 2850 cm™1 is
explained by differences in methyl and methylene groups of organic
matter (Wijewardane et al., 2018). Peaks around 2513 cm™ in
a number of LUCAS spectra indicate the presence of carbonates
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(Leenen et al., 2019). Yet, most soil properties are affected by spectral
overlaps from fundamentals, combinations, and overtones of other
soil properties (Viscarra Rossel et al., 2008). In consequence, for
most soil properties, direct annotation of spectral features to specific
soil properties and quantitative interpretation is difficult or even
impossible without the use of chemometric methods (e.g., PLSR). Here,
it is important to note that unknown samples can only be predicted if
they fall within the property range (Terhoeven-Urselmans et al., 2010).
Due to the mentioned characteristics of the LUCAS MIRS-S5L, a wide
applicability for basic soil properties of arable soils by use of chemo-
metric methods is potentially given. With regard to the validation
sample sets, the achieved results indicate no evidence that fields are
underrepresented by the MIR-SSL which could be caused, for example,
by differences in parent materials and soil development processes, or
by different management practices. However, if a MIR-55L does not
adequately address the location of the samples to be predicted, meth-
ods such as spiking can be advantageous, which allow to extend the
applicability of an MIR-SSL with less effort (Breure et al., 2022).

4.2 | Performance of LUCAS-based MIR models to
predict soil properties at supra-regional scale

The generic LUCAS prediction models for the eight soil properties
with large RZ, RPIQ, and small RMSECV confirmed the applicabil-
ity of the MIR-SSL at supra-regional scale. Texture prediction per-
formed generally well; however, the superior performance for sand
and clay compared to silt can be explained by the closer association
with infrared active minerals which dominate distinct grain size classes
(Hicks et al., 2015). Nevertheless, the rather good silt prediction (RZ =
0.93; RMSECV = 6.3%) was insofar surprising as it was superior to
many earlier findings as reviewed by Soriano-Disla et al. (2014). The
authors reported a maximum RZ of 0.84 and a median R? of 0.63 for
silt. However, indirect effects on predicted silt could be the reason for
the achieved good results. The strong negative correlation between
conventionally measured silt and sand contents points to this assump-
tion. Furthermore, this was also confirmed by a comparison of the PLSR
regression coefficients for sand and silt. Similar wavenumbers con-
tributed to the prediction of sand and silt contents (data of regression
coefficients are not shown).

The good results for SOC were not surprising because MIRS is sensi-
tiveto C—H, C—0, and C—N functional groups that are prevalent in soil
organic matter (SOM) (Soriano-Disla et al., 2014). Best model perfor-
mance in terms of R? was achieved for CaCO5. The RPIQ was compar-
atively small for CaCQ4 because the LUCAS sample set included pre-
dominantly noncalcareous samples. Carbonate peaks in the MIR range
are hardly influenced by other soil components and thus CaCQO5 con-
tents can usually be precisely predicted (Leenen et al., 2019; Tatzber
et al., 2010). Soil pH (CaCl;) models performed well in this study. In
general, it should be considered that soil pH is usually only indirectly
predictable due to its correlation with other soil properties such as
SOM composition and clay mineralogy (Soriano-Disla et al., 2014). For
a global MIR-S5L, which was even more diverse regarding, for example,

soil mineralogy, Terhoeven-Urselmans et al. (2010) achieved slightly
worse predictions for pH (H20) (R = 0.80, RMSEP = 0.75, n = 291).
Similar results for pH (H;0O) were obtained by Wijewardane et al.
(2018) for an MIR-SSL with >20.000 soil samples from the United
States (RZ = 0.80, RMSP = 0.57), which differed from the LUCAS sam-
ple set with regard to soil forming factors and mineralogy and thus also
in the spectral domain.

Since the calibration of models for Py, and K, failed, our large-
scale MIR-SSL cannot be considered suitable for prediction at this
scale. Therefore, a diverse MIR-SSL is inferior to conventional analyti-
cal methods for available nutrients. It is known that these operationally
defined nutrient fractions have weak or no spectral features in the IR
region (Kuang et al., 2012), and various IR-relevant factors that control
P availability impede universal predictability (Patzold et al., 2020).
Thus, the low performance of the P, and K, prediction models for
this diverse large-scale sample set was not surprising. Wijewardane
et al. (2018) reported similar findings for their MIR-SSL of US soils.
In their study, besides PLSR, also artificial neural network was tested
for model calibration, but none of the calibration methods resulted
in reliable prediction models. Nevertheless, some studies reported
on approximated quantitative P, prediction models (e.g., review of
Kuang et al., 2012). This is because P, is under certain conditions
correlated with soil properties that can be predicted via MIRS-PLSR.
Using 586 topsoil samples from different arable fields with loess soils
in Germany, Patzold et al. (2020) achieved satisfactory results for
MIRS-PLSR prediction of calcium-acetate-lactate extractable P (CAL-
P; RZ = 0.72, RPD = 1.9). However, the authors also demonstrated
that, for example, harvest residues from precrops and other factors
affecting SOM quality influence the performance of P, prediction.
Therefore, the authors proposed a standardized sampling strategy
considering management factors to improve P, prediction via MIRS.
In this study, no correlation between conventionally measured SOC
content and P, or K,,, was observed. However, the variability of SOM
composition inthe LUCAS sample set was probably much larger thanin
the sample sets investigated by Patzold et al. (2020). In consequence,
soil properties controlling P,,, extractability were most probably too
diverse for model calibration using the MIR-SSL.

4.3 | Performance of LUCAS-based MIR models to
predict soil properties of an independent regional
sample set

The results of an independent validation of LUCAS prediction mod-
els at regional scale (LLUR samples) considering RZ, RMSEP, and RPIQ
(Figure 3) indicated a reliable prediction for contents of sand, silt, clay,
SOC, and Ny, as well as for pH (CaCly). While for CaCO4 the R? and
RMSEP also confirmed a satisfactory prediction, the RPIQ was below
the threshold proposed by Ludwig et al. (2019). However, the small
RPIQ can be attributed to the large number of noncalcareous LLUR soil
samples (n = 315). In order to explain the differences between perfor-
mance of LOOCV and independent validation, it is necessary to con-
sider the history of the different sample sets. In contrast to the LUCAS

saIe ssa2dy uadQ 10y 3dadxe ‘paniwiad 10U Aj3d13S SI UOINQLISIP pue asn-ay "[2202/90/ L] uo -Alebuny sueiydo?) Ag ‘wod As|im Aieiqgijauljuo//:sdny woly papeojumod ‘sgl ‘2202 'v2922es |



LEENEM ET AL.

- 1

samples, which were taken in a uniform way with scope of creating the
first harmonized and comparable data on soil at European level (Toth
et al., 2013), the LLUR sample set and the corresponding texture anal-
yses of the sample set originate from different sampling campaigns at
state level over many years. However, harmonized and consistent ana-
lytical procedures are important for transferability of prediction mod-
els (Minasny et al., 2009). For the LLUR sample set, methodological
changes in sampling procedures and analytical methods are assumed
due to the time factor in sampling, which caused a greater inconsis-
tency in the analytical data and a larger analytical bias. This might have
contributed to smaller R? and RPIQ as well as larger RMSE and more
biased predictions in the independent validation of sand and silt. In
contrast, SOC, Nygta1, and pH (CaCl,) of the LLUR sample set were uni-
formly reanalyzed in the framewaork of this study. In consequence, the
performance of predictions for these properties was more similar or
even better than for LOOCV on LUCAS sample set. This underlines the
crucial importance of consistent analyses when selecting sample sets
for building SSL. Thus, a carefully built MIR-SSL can provide accurate
predictions at the regional scale for basic soil properties to fully exploit
the advantages of spectroscopic techniques.

44 | Performance of generic LUCAS-based MIR
models to characterize within-field heterogeneity

In order to evaluate the performance of generic LUCAS models for
characterizing within-field heterogeneity, RMSEP and RPIQ are par-
ticularly suitable because the RMSEP provides the absolute predic-
tion error, while the RPIQ relates the prediction error to the prevailing
variation of observed values at the respective field (see Bellon-Maurel
et al.,, 2010). Thus, in general, it can be stated from a small RPIQ that the
prevailing within-field heterogeneity at a given field cannot be char-
acterized by the prediction model. If, in addition, the RMSEP is also
small, this indicates that the within-field variability of the respective
soil property is only weakly expressed.

Small RPIQ values were generally achieved for soil properties and
fields revealing only small within-field heterogeneity. This was found
for prediction of, for example, sand at Bolingen and Gorzig, silt at
Ascheberg, Gorzig, and Wilmersdorf, clay at Gorzig, and SOC at Gorzig
(see Table 4, footnote 2). In these cases, the characterization of hetero-
geneity with generic LUCAS models was not possible. However, at least
in the context of PA, the characterization of within-field heterogeneity
is only required if a pronounced variability is observed. For the fields
with larger within-field heterogeneity, generally more reliable predic-
tions were achieved; this applied, for example, to sand, clay, and SOC
prediction at Ascheberg and Wilmersdorf as well as pH (CaCls;) predic-
tion at Ascheberg, Gorzig, and Wilmersdorf. Regarding the soil texture
properties, the most accurate predictions were possible for clay con-
tent, similar to the previous section.

The CaCOj3 prediction must be evaluated as unsuccessful with
respect to the RPIQ threshold of Ludwig et al. (2019). This was due
to the dominance of noncalcareous soils in the validation sample sets.
However, for agronomic applications, such as PA, the level of CaCO5

content is not important; rather it is sufficient to know whether the
sample is calcareous or not. To easily decide upon this question, Lee-
nenet al. (2019) proposed an approach for the identification of calcare-
ous soil samples via the height of a carbonate peak in a given MIR spec-
trum. Thus, an SSL model is dispensable for evaluating the presence of
CaCOs.

Mostly large RPIQ values were achieved for pH (CaCly; Table 4),
indicating the general suitability of the generic model. However, if more
precise pH predictions are required, locally calibrated models should
be preferred because they are more specific to field conditions (see also
Minasny et al.,2009).

It also applies to other properties that locally calibrated models are
in principle more precise (e.g., Patzold et al., 2020). Leenen et al. (2019)
calibrated local MIR prediction models for SOC, clay, and pH (CaCl;) to
determine lime requirement at the same fields as in this study. In com-
parison to prediction with generic LUCAS models, the local calibrations
in the previous study were occasionally more accurate, but no gen-
eral rule could be deduced. However, the disadvantage of local models
is that their calibration is more costly and time consuming. Certainly,
MIR-55L-based predictions are also inferior to conventional analytical
methods in terms of accuracy. However, it has to be decided, depend-
ing on the problem, which accuracy has to be achieved. In many man-
agement applications, a classification of soil properties replaces exact
determination (e.g., liming: classification of SOC and clay; see Leenen
et al., 2019). Here, the advantages of the MIR-SSL certainly outweigh
local MIRS prediction models as well as conventional analytical meth-
ods.

45 | Stratified modeling using soil parent material
as auxiliary variable to improve local transferability

Prediction models for soil texture rely in particular on the mineralogical
composition of the soil, such as quartz (sand) and various IR-active clay
minerals (Soriano-Disla et al., 2014). This also applies in a similar way
to CaCOs. Thus, it was hypothesized that due to the expected relation-
ship between mineralogical composition and the auxiliary variable par-
ent material, stratification of the MIR-55L-based on this auxiliary vari-
able will lead to improvement in local transferability. However, consid-
erable improvements in characterization of within-field heterogeneity
with stratified compared to generic models were only achieved in sin-
gle cases, for example, for predicting clay at Bolingen and CaCO; at
Wilmersdorf. The reason is probably the smaller concentration range
in the stratified models. An example is clay prediction at Ascheberg
with the EPM-5 model. Despite of a well-performing calibration, only a
negligible improvement for clay prediction at Ascheberg was achieved
compared to the generic model (Figure 4). Clay content in the EPM-5
calibration sample set ranged from 3% to 37%; thus, it did not com-
pletely cover the range at Ascheberg. However, it is a basic require-
ment that the concentration range of the calibration sample set cov-
ers entirely the sample set to be predicted (Terhoeven-Urselmans et al.,
2010). Hence, LUCAS was not designed to depict regional extremes
of soil properties but to yield consistent soil data at European level
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(Toth et al., 2013). In consequence, to fully benefit from the stratifi-
cation approach, a higher sample density that includes the extremes
in the respective region is necessary. Yet, also the already widespread
approach of spiking can help to better adapt the calibration to the local
conditions (e.g., Breure et al., 2022; Seidel et al., 2019). In principle, the
geological map used here represented the best available basis for strat-
ified models at this spatial scale. Of course, the small scale of the map
and the rough classification of the EPM classes contributed to possible
inaccuracies in the allocation of LUCAS samples to the EPM classes.

Wijewardane et al. (2018) showed that using auxiliary variables
can provide improvements in model performance. This cannot be con-
firmed by our results. However, Wijewardane et al. (2018) calibrated
stratified models on more than 20,000 samples that originated from
different land use forms and soil horizons. In this study, by focusing on
topsoil of arable fields, a preselection had already taken place.

5 | CONCLUSIONS

The enlargement of the LUCAS database to MIR spectra offers a fur-
ther valorization of the LUCAS survey. In particular, the fundamental
vibrations that occur in the MIR contribute to improve the informative
value of the LUCAS samples over the already available vis-NIR spectra.

With regard to hypothesis (1), this hypothesis can be confirmed
for various basic soil properties. The MIR-55L built with LUCAS sam-
ples which were taken in various geologic-pedogenic environments and
consistently analyzed in a single laboratory formed an ideal basis for
successful calibration of reliable and accurate MIR prediction mod-
els for basic soil properties that were considered in the framework of
LUCAS: contents of SOC, N, sand, silt, clay, and CaCO3, and pH
(CaCl,). However, for P, and K, the calibration was not success-
ful. Consistency of reference analyses is crucial for calibrating reliable
models as shown for the LLUR sample set.

Varying success was achieved for characterization of soil properties
of unknown sample sets at regional and field scales. In particular, a pre-
cise characterization of SOC and clay content via MIRS-S5L models was
possible. Thus, it can be assumed that this MIR-55L can complement
or even replace conventional soil analyses in, for example, soil mapping
campaigns at regional scale. Further, composite soil samples as usually
taken as basis for management recommendations to farmers can be
rapidly analyzed at small effort and costs. In addition, the MIRS-SSL can
be used to precisely characterize the within-field heterogeneity of soil
properties. Consequently, MIR-55L can also contribute to applications
in PA such as soil zoning or variable rate liming. Yet, for precise fertilizer
dosage, model performance was not satisfactory despite the standard-
ized analysis protocol. Allin all, effort and costs of model calibration can
be drastically reduced by the use of an MIR-SSL. This also increases the
attractiveness of MIRS for data demanding applications such as PA.

In contrast, hypothesis (2) cannot be confirmed. Using soil parent
material auxiliary information for stratified model calibration did not
lead to the expected distinct improvement in characterizing within-
field soil heterogeneity for an already well-focused MIR-S5L. The
expected advantage of adapting models to specific regional spectral

X
-

properties (e.g., with respect to mineralogical composition) in the strat-
ified approach is compensated by the narrowed data range. In order to
take advantage of stratified models, the spatial sample density of the
MIR-S5L should be increased. This includes, in particular, additional soil
samples that increase the value range of the relevant soil properties.
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